Multiplicity of expression of Na+,K+-ATPase {alpha}-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change.
نویسندگان
چکیده
The ability to reverse the net direction of gill ion transport in response to a salinity change is critical for euryhaline teleosts and involves a complex cellular and molecular remodelling of the gill epithelium. The present study aimed to clarify the cellular localisation and exact quantitative inter-relationship of Na(+),K(+)-ATPase alpha- and beta-subunit transcripts in Atlantic salmon gill during salinity change. The combined expression level of all alpha-isoforms in the gill increased by 100% after freshwater (FW) to seawater (SW) transfer. The alpha(1a) and alpha(1b) isoforms were both in the range 1-6 amol 20 ng(-1) total RNA; alpha(1a) decreased and alpha(1b) increased after SW-transfer, their ratio changing from 5:1 in FW to 0.26:1 in SW. The alpha(1c) and alpha(3) levels were 10- and 100-fold lower, respectively. The beta(1)-subunit mRNA level was 0.1-0.3 amol 20 ng(-1) total RNA, thus much lower than the sum of alpha-subunits. Even though increasing 3-fold after SW-transfer, beta-subunit availability may still limit functional pump synthesis. The mRNAs of the predominant alpha(1a) and alpha(1b) isoforms were localised by in situ hybridisation in specific gill cells of both FW and SW salmon. Labelling occurred mainly in presumed chloride cells and cells deep in the filament but occasionally also on lamellae. Overall, the salinity-induced variation in labelling pattern and intensity matched the quantification data. In conclusion, the predominant switching of Na(+),K(+)-ATPase alpha-subunit isoform mRNA during salinity acclimation reflects a marked remodelling of mitochondrion-rich cells (MRCs) in the gill and probably tuning of the pump performance to accomplish a net reversal of gill ion transport in hypo- and hypertonic environments.
منابع مشابه
Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar).
Few studies have examined changes in salmon gill ion transporter expression during the transition from seawater to freshwater, a pivotal moment in the salmonid life cycle. Seawater-acclimated Atlantic salmon were transferred to freshwater and blood and gill tissue were sampled over 30 days of acclimation. Salmon held in seawater had stable plasma osmolality and sodium and chloride levels throug...
متن کاملNa/K/2Cl cotransporter and CFTR gill expression after seawater transfer in smolts (0) of different Atlantic salmon (Salmo salar) families
Smoltification involves morphological and physiological changes in the gills that prepare anadromous salmonids to osmoregulate efficiently in seawater. In a previous study, we found that different families of Atlantic salmon (Salmo salar) smolts vary in their ability to osmoregulate when abruptly transferred to cold seawater and that these differences are correlated with gill Na/K ATPase activi...
متن کاملHistopathological study of gills in experimentally amoebic gill disease (AGD) infected Atlantic salmon, Salmo salar, L.
Amoebic gill disease (AGD) is the most important parasitic disease of Atlantic salmon industry inAustralia. Atlantic salmon (Salmo salar) experimentally infected with Neoparamoeba sp. apparently showedAGD gross signs on the gill and an amoebic-associated gill pathology. Physico-chemical factors of waterduring the experiment were monitored regularly and were approximately constant (temperature: ...
متن کاملVariation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.
We compared seawater tolerance, gill Na(+)/K(+)-ATPase and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance, and mitochondria-rich cell (MRC) morphology of three salmonids, lake trout Salvelinus namaycush, brook trout Salvelinus fontinalis and Atlantic salmon Salmo salar. They were transferred directly from 0 p.p.t. (parts per thousand; freshwater) to 30 p.p.t. seawater, or transferred graduall...
متن کاملDistinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon.
Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 1 شماره
صفحات -
تاریخ انتشار 2009